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Abstract: In recent years, artificial intelligence (AI) technologies 

have been widely used in many business areas. With the attention 

and investment of scientific researchers and research companies 

around the world, artificial intelligence technologies have proven 

their irreplaceable value in traditional speech recognition, image 

recognition, search/recommendation engines, and other areas. At 

the same time, however, the computational effort for artificial 

intelligence technologies is increasing dramatically, posing a huge 

challenge to the computing power of hardware devices. First, in this 

paper, we describe the direction of AI chip technology development, 

including the technical shortcomings of existing AI chips. So, we 

present the directions of AI chip development in recent years. 
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I. INTRODUCTION 

An AI accelerator is a class of microprocessors [1] or computer 

systems [2] that have been developed as hardware accelerators 

for applications with artificial intelligence, in particular artificial 

neural networks, image processing, and machine learning. 

Typical applications are robotics algorithms, the Internet of 

Things, and other data-intensive or sensor-controlled activities 

[3]. There are often many basic projects that typically focus on 

low-precision arithmetic, new data flow architectures, or in-

memory computational functions [4]. A typical AI chip for 

integrated circuits contains billions of MOSFETs [5]. 

There are a number of manufacturer-specific terms for devices 

in this category and this is an emerging technology without a 

dominant design. AI accelerators can be found in many devices 

such as smartphones, tablets, and computers around the world. 

Computer systems have often integrated the processor with 

special accelerators for special tasks called coprocessors. 

Application-specific hardware units include graphics cards, 

sound cards, graphics processors, and digital signal processors. 

A. AI Chip Basics  

AI chips include graphics processors unit (GPUs), field-

programmable gate arrays (FPGAs), and application-specific 

integrated circuits (ASICs) that specialize in AI. General-

purpose chips such as central processing units (CPUs) can also 

be used for some simpler AI tasks, but processors become less 

useful as AI progresses. Like generic processors, AI chips gain 

speed and efficiency (meaning they can perform more 

computations per unit of power consumed) by containing a large 

number of smaller and smaller transistors that run faster and use 

less power than smaller transistors large. Unlike processors, 

however, AI chips also have other AI-optimized design features. 

These features greatly accelerate the identical, predictable, and 

independent computations required by artificial intelligence 

algorithms. This understands that a large number of calculations 

are performed in parallel and not one after the other as with 

CPUs. Calculates low-precision numbers in order to successfully 

implement AI algorithms but reduces the number of transistors 

needed for the same calculation; Accelerate memory access by 

storing, for example, an entire AI algorithm in a single AI chip; 

and using specially designed programming languages to 

efficiently translate AI computer code to run on an AI chip [5]. 

Different types of AI chips are useful for different tasks. GPUs 

are most commonly used for the initial development and 

refinement of artificial intelligence algorithms. This process is 

called "training". FPGAs are primarily used to apply trained AI 

algorithms to actual data input. This is often called "inference". 

ASICs can be designed for training or inference. 

II. LITERATURE REVIEW  

H. Momose et al. [6] in this article, ASIC chips designed for 

learning functions generalize with competitive computing 

power. However, the restrictions of Moore's Law have begun to 

impose themselves on this emerging sort of AI chip, creating the 

necessity for brand spanking new technological innovations. As 

for Edge AI chips, research is advancing on data compression 

technology to scale back power consumption while maintaining 

high performance. 



SMART MOVES JOURNAL IJOSTHE                VOLUME. 8, ISSUE 6, JUNE 2021 

www.ijosthe.com         7 

Y. Chen et al. [7] during this article, we specialise in 

summarizing recent advances within the design of deep neural 

network (DNN) accelerators, aka DNN accelerators. We discuss 

different architectures that support DNN projects with regards to 

compute units, data flow optimization, targeted network 

topologies, architectures for brand spanking new technologies 

and accelerators for brand spanking new applications. We also 

give our insights into the longer term trend of AI chip designs. 

Tso-Bing Juang et al. [8] during this paper, we've proposed an 

efficient design for zone delay products (ADP) for CNN 

(Convolutional Neural Network) circuits using logarithmic 

number systems (LNS). By using LNS-based schemes, the space 

required for an outsized number of conventional multipliers 

required in CNN circuits are often greatly reduced. The 

simulation results show that with ADP savings of nearly 60%, 

our proposed design can generate fewer errors than the normal 

multiplier-based design suitable for deep learning applications. 

John R Hu et al. [9] this text presented a scientific approach for 

identifying, predicting and optimizing Design Process 

Interaction (DPI). And to optimize the general technology to the 

chip / system. This resulted within the best performance, 

performance and efficiency for the GPU / SOC for top 

performance computing (HPC), AI (AI) and autonomous vehicle 

applications. 

III. SYSTEM-ON-CHIP (SOC) ARCHITECTURE 

System-on-chip (SoC) architectures increasingly feature 

hardware accelerators for energy-efficient performance. 

Complex applications use these special components to enhance 

the performance of selected processing cores. 

For example, hardware accelerators for machine learning 

applications are increasingly wont to identify the underlying 

relationships in unstructured big data [10]. Many of those 

algorithms first create an indoor model by analyzing very large 

amounts of knowledge . in order that they use this model to form 

decisions. due to the inherent parallelism of their cores, they're 

good candidates for hardware specialization, especially in 

loosely coupled accelerators (LCAs) [11] - [13]. The instance in 

Figure 1 shows a part of a SoC that has two LCAs and a 

processor core connected to external memory (DRAM). Each 

ACL consists of the accelerator logic that implements the 

compute and personal local storage (PLM), which stores the info 

that must be accessed with a hard and fast latency. PLMs 

structure the storage subsystem of the SoC accelerator and are 

made from many units called PLM elements. 

Each of those PLM elements is employed to store an algorithm 

arrangement. Although PLMs are known to be responsible for 

most of the accelerator domain [14], they will only contain some 

of the entire working dataset at any given time, which is fully 

stored in DRAM. . The accelerator calculation is thus organized 

in successive iterations during which the info is exchanged step 

by step through DMA transfers with DRAM. 

 

Fig. 1. Accelerator-based SoC 

Therefore, the accelerator logic is structured with multiple 

blocks of hardware operating simultaneously in parallel or 

within the pipeline (i.e. inputs, computers, and outputs). The 

inbound and outbound hardware blocks handle data transfers, 

while hardware blocks implement accelerator functionality. 

PLM management is therefore completely transparent to the 

processor core, which is liable for processing the info within the 

DRAM and controlling the execution of the accelerator. An OS 

runs on the kernel and every accelerator is managed by a tool 

driver. 

With special microarchitectures for accelerator logic and PLM, 

lifecycle assessments can perform better than processor cores to 

run the algorithm that they were developed. Accelerator logic 

can cash in of spatial parallelism to perform multiple operations 

in parallel. The dimensions of every PLM item is adjusted 

consistent with the quantity of knowledge to be archived. 

Although processor memories are designed for sequential access 

(even when freeing memory with the accelerator [15], [16]), 

PLMs require more ports in order that the accelerator logic can 

perform more memory operations within the same clock cycle 

and increase hardware parallelism. There are several solutions to 

implement multiport memories [17]. Distributed registers, which 

are fully included within the accelerator logic, are used for little 

data structures that are accessed frequently. 



SMART MOVES JOURNAL IJOSTHE                VOLUME. 8, ISSUE 6, JUNE 2021 

www.ijosthe.com         8 

However, the mixture size of those logs is understood to grow 

exponentially with the quantity of knowledge to be stored. Large 

and sophisticated data structures require the allocation of 

property (IP) blocks of dedicated memory, which are more 

efficient in terms of resources. However, because the size of 

those storage elements increases significantly with the amount 

of ports [18], technology vendors generally only offer storage IP 

addresses with one or two ports [19]. 

IV. THE DEVELOPMENT DIRECTION OF AI CHIP 

TECHNOLOGY 

A. Technical defects of existing AI chips 

At present, the core of mainstream AI chips is to achieve the 

speedup of the main convolution operation in CNN 

(convolutional neural network) by multipliers and 

accumulations. This generation of AI chips mainly has the 

following three aspects: First, the amount of data required for 

deep learning calculation is huge, and the memory bandwidth 

becomes the bottleneck of the entire system. Second, a large 

amount of memory access and MAC array computing, resulting 

in the overall power consumption of AI chips increased. Third, 

deep learning requires a lot of computing power. With the rapid 

development of deep learning algorithms, new algorithms are 

not well supported in accelerators that have been solidified. 

Therefore, the best way to improve computing power is to do 

hardware acceleration, which is to improve the computing power 

of AI chips. 

B. The breakthrough direction of AI chips in the future 

Therefore, it is foreseeable that the next generation of AI chips 

will have the following five trends.  

First, more efficient convolution deconstruction / reuse. 

Based on the standard SIMD, CNN can further reduce data 

communication on the bus due to its special multiplexing 

mechanism. The concept of reuse is particularly important in 

very large neural networks. How to reasonably decompose and 

map these super large convolutions to effective hardware has 

become a research direction. 

Second, lower inference calculation / storage bit width. 

One of the biggest evolutions of AI chips may be the rapid 

reduction of neural network parameters/calculation bit widths—

from 32-bit floating point to 16-bit floating point/fixed point, 8-

bit fixed point, and even 4-bit fixed point. In the field of 

theoretical computing, 2 or even 1 bit of parameter width has 

gradually entered the practice field. 

Third, how to reduce the memory access delay. 

When computing components are no longer the design 

bottleneck of neural network accelerators, how to reduce 

memory access latency will be the next research direction. 

Fourth, a more sparse large-scale vector implementation. 

Although the neural network is large, there are many cases where 

zero is input. At this time, the sparse calculation can reduce the 

useless energy efficiency, so as to reduce the useless power 

consumption. 

Fifth, Computing and storage integration. 

Process-in-memory technology, through the new nonvolatile 

storage device, adds neural network computing function to the 

storage array, eliminating data moving operation, and realizes 

the neural network processing of computational storage 

integration, which significantly improves the power 

consumption performance. 

V. ARTIFICIAL INTELLIGENCE CHIP KEY MARKET 

SEGMENTS 

A. By Chip Type 

 GPU 

 ASIC 

 FPGA 

 CPU 

 Others 

B. By Application 

 Natural Language Processing (NLP) 

 Robotic  

 Computer Vision 

 Network Security 

 Others 

C. By Technology 

 System-on-Chip (SoC) 

 System-in-Package (SIP) 

 Multi-chip Module 

 Others 

D. By Processing Type 

 Edge 

 Cloud 

E. By Industry Vertical 

 Media & Advertising 

 BFSI 

 IT & Telecom 

 Retail 

 Healthcare 
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 Automotive & Transportation 

 Others 

VI. CONCLUSION  

In recent years, AI technology has made continuous inroads. 

Being an important physical foundation of AI technology, AI 

chips have high industrial value and strategic location. However, 

from a general trend perspective, it is still in the early stages of 

AI chip development and there is a large margin for innovation 

in scientific research and industrial applications. Only when the 

computing power of the core reaches a certain level and the 

synergy between algorithm and big data can lead artificial 

intelligence to greater progress. 
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